Formule de Boltzmann

Épitaphe sur la tombe de Ludwig Boltzmann

En physique statistique, la formule de Boltzmann (1877) est une formule fondamentale qui définit l'entropie microcanonique d'un système physique à l'équilibre macroscopique, libre d'évoluer à l'échelle microscopique entre micro-états différents. Elle s'écrit :

est la constante de Boltzmann égale à 1,380 648 52(79) × 10−23 J K−1. est appelé le nombre de complexions du système ou nombre de configurations.

L'introduction par Boltzmann de cette interprétation statistique de l'entropie marque un tournant majeur dans la compréhension du passage d'une dynamique microscopique réversible à une évolution macroscopique irréversible. Cette interprétation permit notamment d'éclaircir le sens du théorème H, démontré par Boltzmann en 1872 à partir de son équation pour les gaz. Le théorème H fut en effet vertement critiqué par ses détracteurs.

Cette idée d'interprétation statistique sera affinée en 1907 avec le modèle des urnes d'Ehrenfest, un modèle stochastique introduit par les époux Ehrenfest. Elle sera finalement synthétisée en 1911 dans leur célèbre article de revue[1].

  1. Paul & Tatiana Ehrenfest ; The Conceptual Foundations of the Statistical Approach in Mechanics, Dover, Inc. (1990), (ISBN 0-486-66250-0). Réédition d'un article classique paru initialement en 1912 en allemand. Niveau second cycle universitaire.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne