Le lemme de classe monotone, dû à Wacław Sierpiński[1] et popularisé par Eugene Dynkin[2], permet de démontrer, de manière économique, l'égalité entre deux lois de probabilité : de même que deux applications linéaires qui coïncident sur une base coïncident sur l'espace entier, deux mesures de probabilité qui coïncident sur un π-système, coïncident sur la tribu engendrée par ce π-système.
Dans certains ouvrages, le lemme de classe monotone apparaît sous le nom de « théorème pi-lambda de Dynkin ».