Un multivecteur est le résultat d'un produit défini pour les éléments d'un espace vectoriel V. Un espace vectoriel muni d'une opération linéaire de produit entre ses éléments est une algèbre; on peut compter parmi les exemples d'algèbres sur un corps celles des matrices et des vecteurs.[1],[2],[3]. L'algèbre des multivecteurs est construite grâce au produit extérieur ∧ et est liée à l’algèbre extérieure des formes différentielles[4].
L'ensemble des multivecteurs d'un espace vectoriel V est gradué par le nombre de vecteurs de la base de V qui forment un multivecteur de l’ensemble. Un multivecteur produit de p vecteurs de base est appelé multivecteur de grade p, ou p-vecteur. La combinaison linéaire de p-vecteurs de base forme un espace vectoriel noté Λp(V). Le grade maximal d'un multivecteur est la dimension de V.
Le produit d'un p-vecteur et d'un k-vecteur est un (k + p)-vecteur, l'ensemble des combinaisons linéaires de tous les multivecteurs sur V est une algèbre associative et close par le produit extérieur. Cette algèbre, notée Λ(V), est appelée l'algèbre extérieure de V[5].