Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1.
Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E. Tout vecteur non nul v est la multiplication du vecteur unitaire u = v/║v║ par un nombre réel strictement positif, à savoir la norme ║v║ de v.
Pour tout vecteur ayant un sens opposé à v, on a :v = -║v║u.
En physique, pour dénoter les vecteurs unitaires, il est usuel[réf. nécessaire] d'utiliser un accent circonflexe : . En mécanique quantique, les états sont des vecteurs unitaires d'espaces de Hilbert. En particulier, les fonctions d'onde sont des fonctions sur R3 de carré sommable et de norme L2 égale à 1.