En matemáticas, especialmente na teoría da orde, un elemento maximal dun subconxunto dalgúns conxuntos preordenados é un elemento de que non é menor que calquera outro elemento en . Un elemento minimal dun subconxunto de algún conxunto preordenado está definido dualmente como un elemento de que non é maior que calquera outro elemento en .
As nocións de elementos maximal e minimal son máis febles que as de elemento maior e menor que tamén se coñecen, respectivamente, como máximo e mínimo. O máximo dun subconxunto dun conxunto preordenado é un elemento de que é maior ou igual a calquera outro elemento de e o mínimo de volve a definirse de forma dual. No caso particular dun conxunto parcialmente ordenado, mentres que pode haber como moito un máximo e como moito un mínimo pode haber varios elementos maximais ou minimais. [1] [2] Nos conxuntos totalmente ordenados, coinciden as nocións de elemento maximal e máximo, e de elemento minimal e mínimo.
Como exemplo, na colecciónordenado por inclusión, o elemento {d, o} é mínimal xa que non contén conxuntos na colección, o elemento {g, o, a, d } é maximal xa que non hai conxuntos na colección que o conteñan, o elemento {d, o, g} non é ningún non é nin minimal nin maximal e o elemento {o, a, f } pola contra ten as dúas propiedades é minimal e maximal. En contraste, non existe nin un máximo nin un mínimo para
O lema de Zorn afirma que todo conxunto parcialmente ordenado para o cal cada subconxunto totalmente ordenado ten un elemento maiorante contén polo menos un elemento maximal. Este lema é equivalente ao teorema da boa orde (ou de Zermelo) e ao axioma de escolla [3] e implica resultados importantes noutras áreas matemáticas como o teorema de Hahn-Banach, o teorema de Kirszbraun, o teorema de Tychonoff, a existencia dunha base de Hamel para cada espazo vectorial e a existencia dun pechamento alxébrico para todo corpo.