Eulerova formula, nazvana prema Leonhardu Euleru, prikazuje u području analize kompleksnih brojeva duboku povezanost trigonometrijskih funkcija s kompleksnim eksponencijalnim funkcijama. Eulerova formula ustanovljava da je za svaki realni broj x,
gdje je e matematička konstanta i baza prirodnih logaritama, i imaginarna jedinica, a sin i cos trigonometrijske funkcije s argumentom x datim u radijanima. Eulerova formula vrijedi i ako je x kompleksni broj te se ponekad ova formula navodi i u njezinom općenitijem, kompleksnom obliku. Ova formula prema nekim autorima smatra se jednom od “najizuzetnijih formula na području cijele matematike”.
Njezin se dokaz može naći u objašnjenju Eulerovog identiteta.