Trokut sa stranicama a, b i c
Heronova formula tvrdi da je površina A, trokuta čije su stranice a, b i c, jednaka:
![{\displaystyle A={\sqrt {s(s-a)(s-b)(s-c)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f2040da62a4f48c9f502e3f38e44133524401c00)
gdje je s – poluopseg trokuta:
![{\displaystyle s={\frac {a+b+c}{2}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/08ed8a6e351198e0c4ca8d71fa2e2bc4171e9439)
Heronova formula se može isto pisati:
![{\displaystyle A={\ {\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)\ \over 16}}\,}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8c76e6c9023a742b777dfa4cd9ec5d808b6f48c)
![{\displaystyle A={\ {\sqrt {2(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{4}+b^{4}+c^{4})\ \over 16}}\,}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f1724ef4dd9eaadf37f9072a5acdc6ab2dd0246a)
![{\displaystyle A={\frac {1}{4}}{\sqrt {(a^{2}+b^{2}+c^{2})^{2}-2(a^{4}+b^{4}+c^{4})}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/145bbf1d0b5f4a9c1d3f76d343a991beaed7b701)
Heronova formula je dobila naziv prema starogrčkom matematičaru Heronu. Još jedan oblik Heronove formule je:[1]
![{\displaystyle A={\frac {1}{2}}{\sqrt {a^{2}c^{2}-\left({\frac {a^{2}+c^{2}-b^{2}}{2}}\right)^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fd2efb91f82959fb1478c167dd873f5aa85a2e84)
Za trokute koji imaju vrlo male kutove, praktičniji je drugi oblik Heronove formule:[2]
![{\displaystyle A={\frac {1}{4}}{\sqrt {(a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5de286d8e421c84e91ef526608def6b83dcf5776)
- ↑ Weisstein Eric W.: "Heron's Formula", MathWorld
- ↑ W. Kahan [1] Arhivirana inačica izvorne stranice od 10. studenoga 2006. (Wayback Machine) "Miscalculating Area and Angles of a Needle-like Triangle"