Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Mandelbrot set di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |
Himpunan Mandelbrot adalah himpunan dari bilangan kompleks yang digunakan sebagai fungsi tidak menyimpang ketika iterasi dari , yaitu, urutan dari , , dll, tetap dibatasi dalam nilai absolut.
Definisinya dikreditkan ke Adrien Douady yang menamakannya sebagai penghormatan kepada matematikawan Benoit Mandelbrot.[1] Himpunan tersebut terhubung ke sebuah himpunan Julia, dan himpunan Julia terkait menghasilkan bentuk fraktal yang kompleks serupa.
Gambar set Mandelbrot dapat dibuat dengan mengambil sampel bilangan kompleks dan pengujian, untuk setiap titik sampel , apakah urutan dark pergi ke tak terhingga (dalam praktik apakah itu meninggalkan beberapa lingkungan nilai yang telah ditentukan sebelumnya dari 0 setelah jumlah iterasi yang telah ditentukan). Bila bilangan riil dan bagian imajiner dari sebagai koordinat gambar pada bidang kompleks, piksel kemudian dapat diwarnai sesuai dengan seberapa cepat urutan dari melintasi ambang yang dipilih secara sewenang-wenang, dengan warna khusus (hitam) digunakan untuk nilai yang urutannya belum melewati ambang setelah jumlah iterasi yang ditentukan sebelumnya (ini diperlukan untuk membedakan dengan jelas gambar set Mandelbrot dari gambar pelengkap). Bila dipertahankan konstan dan nilai awal nilai dinotasikan dengan sebagai gantinya, variabel ini memperoleh nilai himpunan Julia untuk setiap titik di parameter spasi dari fungsinya.
Gambar dari himpunan Mandelbrot menunjukkan batas yang rumit dan sangat rumit yang mengungkapkan detail rekursif yang semakin halus pada perbesaran yang meningkat. Dengan kata lain, batas himpunan Mandelbrot adalah kurva fraktal. "Gaya" dari detail berulang ini bergantung pada wilayah himpunan yang sedang diperiksa. Batas himpunan juga menggabungkan versi yang lebih kecil dari bentuk utama, sehingga properti fraktal dari kemiripan diri berlaku untuk seluruh himpunan, dan tidak hanya untuk bagian-bagiannya.
Himpunan Mandelbrot telah menjadi populer di luar matematika baik karena daya tarik estetikanya maupun sebagai contoh struktur kompleks yang timbul dari penerapan aturan sederhana. Ini adalah salah satu contoh paling terkenal dari visualisasi matematika dan keindahan matematika.