Nilai dan vektor eigen

Matriks menyebabkan vektor memanjang tanpa mengubah arah vektor, maka merupakan vektor eigen dari .

Dalam aljabar linear, vektor eigen (eigenvector) atau vektor karakteristik dari suatu matriks berukuran adalah vektor tak nol yang hanya mengalami perubahan panjang ketika dikali dengan matriks tersebut. Nilai eigen (eigenvalue) yang berasosiasi dengan vektor tersebut, umumnya dilambangkan dengan , menyatakan besar perubahan panjang vektor yang terjadi. Secara umum dalam ruang vektor multidimensi, vektor eigen tidak mengalami rotasi ketika ditransformasikan oleh matriks. Hal ini berlaku untuk matriks dengan elemen bilangan real, dan akan mengalami rotasi ketika elemen berupa bilangan kompleks.[1][2] Nilai eigen dan vektor eigen berguna dalam proses kalkulasi matriks, yang keduanya diterapkan dalam bidang matematika murni dan matematika terapan, contohnya pada transformasi linear.[3] Ruang eigen dari merupakan ruang vektor yang dibentuk dari gabungan vektor nol dan kumpulan vektor eigen yang berasosiasi dengan .[4]

Istilah eigen sering kali dipadankan dengan istilah karakteristik, karena kata "eigen" yang berasal dari bahasa Jerman memiliki arti "asli", dalam konteks menjadi ciri khas atau karakteristik dari suatu sifat.[5]

  1. ^ Kuttler, Kenneth (2012-01-10). Elementary Linear Algebra (dalam bahasa Inggris). The Saylor Foundation. 
  2. ^ Kuttler, Kenneth. 2012. Linear Algebra II: Spectral Theory and Abstract Vector Spaces. Ventus Publishing ApS. ISBN 978-87-403-0241-7
  3. ^ Leon, Steven J. . 2001 . Aljabar Linear dan Aplikasinya, Edisi Kelima . Jakarta: Erlangga . ISBN 979-688-173-X
  4. ^ Weisstein, Eric W. "Eigenspace". mathworld.wolfram.com (dalam bahasa Inggris). Diakses tanggal 2021-11-11. 
  5. ^ Axler, Sheldon . 1997 . ‘’’Linear Algebra Done Right Second Edition’’’ . Springer-Verlag New York, Inc. . ISBN 0-387-98259-0

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne