Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. (Oktober 2020) |
Operasi aritmetika | ||||||||||||||||||||||||||||||||||||||||||
|
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Division di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel) |
Operasi aritmetika | ||||||||||||||||||||||||||||||||||||||||||
|
Pembagian adalah salah satu dari empat operasi dasar aritmetika, cara bilangan digabungkan untuk membuat bilangan baru. Operasi lainnya adalah penambahan, pengurangan, dan perkalian.
Pada tingkat dasar pembagian dua bilangan asli, antara lain kemungkinan interpretasi, proses menghitung berapa kali satu bilangan dimasukkan ke dalam bilangan lain.[1] Bilangan kali ini tidak selalu merupakan bilangan bulat (bilangan yang diperoleh dengan menggunakan operasi aritmetika lain pada bilangan asli).
Pembagian bersisa atau pembagian Euklides dari dua bilangan asli memberikan hasil bagi bilangan bulat, yang merupakan bilangan kedua benar-benar terkandung dalam bilangan pertama, dan sisa, bagian dari bilangan pertama tersisa, ketika dalam proses menghitung hasil bagi, tidak ada potongan penuh lebih lanjut dari ukuran angka kedua yang dapat dialokasikan.
Agar modifikasi pembagian ini hanya menghasilkan satu hasil tunggal, bilangan asli diperluas ke bilangan rasional (bilangan yang diperoleh dengan menggunakan aritmetika pada bilangan asli) atau bilangan real. Dalam sistem bilangan diperluas, pembagian adalah operasi invers dari perkalian, yaitu a = c / b berarti a × b = c, selama b bukan nol. Jika b = 0, maka ini adalah pembagian dengan nol, yang tidak terdefinisi.[a][4]
Kedua bentuk pembagian muncul dalam berbagai struktur aljabar, cara yang berbeda untuk mendefinisikan struktur matematika. Dimana pembagian Euclidean (dengan sisa) didefinisikan disebut domain Euclidean dan termasuk gelanggang polinomial dalam satu tak tentu (yang mendefinisikan perkalian dan penambahan pada rumus variabel tunggal). Dimana pembagian (dengan satu hasil) oleh semua elemen bukan nol didefinisikan disebut medan dan gelanggang pembagian. Dalam gelanggang elemen yang selalu memungkinkan pembagian disebut unit (misalnya, 1 dan 1 dalam gelanggang bilangan bulat). Generalisasi lain dari pembagian untuk struktur aljabar adalah grup hasil bagi, dimana hasil dari "pembagian" adalah grup dari bilangan.
<ref>
tidak sah;
tidak ditemukan teks untuk ref bernama mwdiv
Kesalahan pengutipan: Ditemukan tag <ref>
untuk kelompok bernama "lower-alpha", tapi tidak ditemukan tag <references group="lower-alpha"/>
yang berkaitan