In ottimizzazione convessa vincolata e in analisi numerica, l'algoritmo di Frank-Wolfe (detto anche algoritmo del gradiente condizionale[1], oppure del gradiente ridotto; in inglese conditional gradient o reduced gradient) è un metodo iterativo che consente di determinare il punto di minimo di un'approssimazione lineare della funzione obiettivo.
Il metodo fu sviluppato da Marguerite Frank e Philip Wolfe nel 1956[2].
- ^ (EN) E.S. Levitin e B.T. Polyak, Constrained minimization methods, in USSR Computational Mathematics and Mathematical Physics, vol. 6, n. 5, gennaio 1966, pp. 1-50, DOI:10.1016/0041-5553(66)90114-5. URL consultato l'8 marzo 2024.
- ^ (EN) Marguerite Frank e Philip Wolfe, An algorithm for quadratic programming, in Naval Research Logistics Quarterly, vol. 3, n. 1-2, marzo 1956, pp. 95-110, DOI:10.1002/nav.3800030109. URL consultato l'8 marzo 2024.