Derivata funzionale

In matematica e in fisica, la derivata funzionale è una generalizzazione della derivata direzionale. Mentre la derivata direzionale differenzia nella direzione di un vettore, la derivata funzionale differenzia nella direzione di una funzione. Entrambe possono essere viste come estensioni dell'usuale derivata.

Quando si considerano spazi localmente convessi, la derivata funzionale è indicata come derivata di Gâteaux. In particolare, se si tratta di spazi di Banach è detta derivata di Fréchet. In fisica teorica è usato un terzo tipo di derivata (euleriana), concettualmente più simile alla derivata parziale.

Nel calcolo delle variazioni, i funzionali sono frequentemente espressi mediante l'integrale di funzioni. Se ad esempio si considera un integrando di un funzionale :

con , se si varia aggiungendole un'altra funzione arbitrariamente piccola, e si espande l'integrando in potenze di , allora la variazione del valore di al primo ordine dello sviluppo in può essere espressa come:

Il coefficiente di , denotato con , è la derivata funzionale di rispetto a nel punto . In questo caso, la derivata funzionale è il termine a sinistra nell'equazioni di Eulero-Lagrange:


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne