In matematica, l'equazione di Burgers, il cui nome si deve a Johannes Martinus Burgers, è un'equazione differenziale alle derivate parziali fondamentale per la meccanica dei fluidi, e utile anche in numerose aree della matematica applicata, quali la modellazione della gasdinamica e del flusso del traffico.
Per una data funzione di due variabili, la forma generale dell'equazione di Burgers è:
Quando , l'equazione diventa inviscida:
che è un prototipo per equazioni per le quali la soluzione può sviluppare discontinuità a funzione gradino (onde d'urto). La precedente equazione è la "forma avvettiva" dell'equazione di Burgers, mentre la "forma conservativa" è: