In teoria dei gruppi, un gruppo G si dice libero se esiste un sottoinsieme S di G tale che è possibile scrivere ogni elemento di G con una parola ridotta non banale, ossia come applicazione ripetuta dell'operazione binaria associata a G a un numero finito di elementi di S e dei loro inversi in modo univoco (tralasciando le variazioni banali come st−1 = su−1ut−1). Un gruppo libero viene definito dove i membri di S sono chiamati generatori di , e il numero di generatori è il rango del gruppo libero.
Un concetto collegato ma distinto è quello di gruppo abeliano libero.