In statistica ed elaborazione digitale delle immagini, il lisciamento[1] (traduzione letterale dell'inglese smoothing) o, meglio, perequazione[2][3] di un insieme consiste nell'applicazione di una funzione di filtro il cui scopo è evidenziare i pattern significativi, attenuando il rumore generato da artefatti ambientali, elettrici, elettronici, informatici o fisiologici oppure altri fenomeni di disturbo legati a fattori di scala molto piccoli (ad es. i movimenti millimetrici di un paziente nel neuroimaging che a causa dell'elevata risoluzione provocano effetti di traslazione) o a fenomeni ad alta velocità. Praticamente si tratta di fare una media tra valori contigui oppure molto vicini nello spazio (2D, 3D, 4D) oppure nel tempo[4].
Per realizzare il lisciamento sono stati sviluppati diversi algoritmi matematici.
Nell'analisi finanziaria per esempio uno degli algoritmi più comunemente usati è quello della "media mobile", utilizzato spesso per cogliere tendenze importanti in serie storiche di sondaggi statistici.[5]
Nella visione artificiale e nell'imaging biomedico il lisciamento serve per attenuare il rumore del sensore, dell'ambiente e le brusche transizioni, compiendo un'operazione opposta a quella dell'evidenziamento dei bordi.[6]