Logica

Disambiguazione – Se stai cercando altri significati, vedi Logica (disambigua).
Disambiguazione – "Logico" rimanda qui. Se stai cercando altri significati, vedi Logico (disambigua).

La logica (dal greco λόγος, logos, ovvero "parola", "pensiero", "idea", "argomento", "ragione", da cui poi λογική, logiké) è lo studio delle relazioni di inferenza tra proposizioni,[1] cioè lo studio delle leggi del ragionamento e della dimostrazione, generalmente definita come una branca della filosofia e la scienza dell'argomentazione.[2][3] Ciò che studia sono i principi della dimostrazione e dell'inferenza valida, gli errori, i paradossi e la nozione di verità. La logica è sia formale che informale. La logica e le sue applicazioni giocano un ruolo centrale nella filosofia, nella matematica, nell'informatica, nell'intelligenza artificiale e nella linguistica. Attraverso le sue applicazioni negli ambiti appena citati è possibile impiegare i risultati della logica all'analisi del ragionamento e delle argomentazioni.

La logica formale è la scienza che studia le regole di inferenze tra enunciati e le loro condizioni di validità. È una scienza formale perché le relazioni di inferenza sono studiate a partire da un linguaggio matematicamente costruito, e le condizioni di validità sono studiate interpretando il linguaggio su strutture semantiche matematicamente definite.[4] Lo studio delle inferenze e delle condizioni di validità può essere unito, a seconda dei sistemi logici studiati, dai teoremi di completezza e di correttezza. Inoltre, i sistemi logici possono essere classificati come decidibili, per i quali è possibile dare un algoritmo che in un numero finito di passi permetta di stabilire se un dato enunciato della logica sia o meno una verità logica, e non decidibili, per i quali non è possibile fornire tali algoritmi.[5] La logica formale può essere deduttiva o induttiva. Le logiche deduttive studiano le relazioni di inferenza per cui è necessariamente vero che se tutte le premesse sono vere, allora la conclusione è vera. Le logiche induttive studiano le relazioni di inferenza per cui è possibile che tutte le premesse siano vere e che la conclusione sia falsa. Un esempio di logica formale deduttiva di cui si possono provare completezza, correttezza e decidibilità è la logica proposizionale. Un esempio di logica formale induttiva di cui si possono provare i teoremi di completezza e di correttezza, ma che non è decidibile è la logica del prim'ordine.

La logica informale, invece, studia la teoria dell'argomentazione, il pensiero critico e le fallacie logiche. La differenza principale tra la logica formale e la logica informale è data dal fatto che, mentre la logica formale studia le regole di inferenza tra proposizioni espresse in linguaggi artificiali definiti su modelli semantici matematici, la logica informale studia il modo in cui identificare le inferenze negli argomenti presentati nelle lingue naturali in contesti reali e il modo in cui valuatarne debolezze e punti di forza.[6][7]

La logica studia forme valide di inferenza come il modus ponens.

La logica studia le inferenze, che consistono in un insieme di premesse e un insieme di conclusioni. Le premesse e le conclusioni proposizioni definite dalla loro struttura sintattica e dall'interpretazione semantica datagli. Nella logica formale le proposizioni complesse sono costituite, secondo regole di costruzione definite ricorsivamente, da proposizioni più semplici legate tra loro dagli operatori logici. Tutti i linguaggi logici sono definite a partire dai connettivi proposizionali, che permettono di creare enunciati complessi a partire dagli enunciati atomici. A seconda dei sistemi logici, il linguaggio può essere esteso con i quantificatori o con gli operatori modali. Nella logica informale, qualsiasi proposizione grammaticalmente corretta della lingua naturale studiata può essere considerata una possibile premessa o una possibile conclusione. La verità di una proposizione dipende dalle denotazioni dei suoi costituenti. Le proposizioni logicamente vere costituiscono un caso speciale perché la loro verità dipende solo dalla forma sintattica che possiedono e non dalla interpretazione semantica (denotazione) che gli si attribuisce.

Le relazioni inferenziali possono essere corrette o non corrette. Una inferenza è corretta se le sue premesse supportano la sua conclusione. La forma di inferenza più forte si trova nelle inferenze deduttive, in cui è impossibile che le premesse siano vere e la conclusione sia falsa. Forme deboli di inferenza sono le inferenze induttive e abduttive. Entrambe sono forme ampliative di inferenza, perché permettono di arrivare a conclusioni che ampliano le informazioni disponibili, ma in cui è possibile che tutte le premesse siano vere e che la conclusione sia falsa. Le inferenze induttive sono tutte le inferenze in cui è possibile che le premesse siano vere e la conclusione falsa e assumono spesso la forma di generalizzazioni o di correlazioni statistiche. Le inferenze abduttive sono quelle che mirano ad analizzare le relazioni di spiegazione migliore.[8] Molti argomenti presentati nel discorso quotidiano e nelle scienze sono argomenti che impiegano forme di inferenza ampliative.

  1. ^ Irving M. Copi, Carl Cohen e Kenneth McMahon, Introduction to Logic, 14ª edizione, Routledge, 2016.
  2. ^ (IT) lògica in Vocabolario, su Treccani. URL consultato il 23 aprile 2023.
  3. ^ (IT) logica, su Wikizionario. URL consultato il 23 aprile 2023.
  4. ^ Dirk van Dalen, Logic and Structure, 5ª edizione, Springer London, 2012.
  5. ^ Herbert B. Enderton, A Mathematical Introduction to Logic, 2ª edizione, Academic Press, 2001.
  6. ^ (EN) Leo Groarke, Informal Logic (Stanford Encyclopedia) [Logica Informale], su Stanford Encyclopedia of Philosophy, Edward N. Zalta & Uri Nodelman. URL consultato il 25 marzo 2023.
  7. ^ (EN) Irving M. Copi, Carl Cohen e Kenneth McMahon, Introduction to Logic, 14ª edizione, Routledge, 2016.
  8. ^ (EN) Igor Douven, Abduction [Abduzione], su Stanford Encyclopedia of Philosophy, Edward N. Zalta, 2021. URL consultato il 25 marzo 2023.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne