Numero primo di Mersenne

In matematica un numero primo di Mersenne è un numero primo inferiore di uno rispetto ad una potenza di due. I numeri primi di Mersenne sono esprimibili come:

con intero positivo primo; infatti, si può dimostrare che se non è primo, allora non è primo. Tale numero è talvolta indicato come esponente di Mersenne (successione A000043 in OEIS). Si noti che non è primo e che quindi non tutti i numeri primi corrispondono a un esponente di Mersenne, ma solo quelli per cui risulta anch'esso primo.

A volte nella definizione di numero primo di Mersenne non viene richiesto a priori che l'indice sia primo. L'equivalenza delle due definizioni segue dal fatto che se è primo, allora anche deve essere primo, come si vede facilmente dall'identità

In generale un numero del tipo viene detto "numero di Mersenne" (anche quando non è un numero primo di Mersenne). Si conoscono diverse proprietà dei fattori primi degli composti con primo. Ad esempio (e Fermat fu il primo ad evidenziare e usare questa proprietà) si può dimostrare che ogni fattore primo di dev'essere del tipo con intero positivo[1].

I numeri primi di Mersenne prendono il nome dal matematico francese Marin Mersenne (1588-1648). Mersenne compilò una lista di numeri primi di questo tipo considerando tutti i valori di fino a . Tale lista conteneva però alcuni errori: includeva e (che non sono primi), mentre non comparivano , e (che sono primi).

I primi dodici numeri primi di Mersenne sono:

I numeri primi di Mersenne sono collegati con i numeri perfetti. Nel IV secolo a.C. Euclide dimostrò che se è un numero primo, allora è un numero perfetto.

Nel XVIII secolo Eulero provò che tutti i numeri perfetti pari hanno questa forma. Nessun numero perfetto dispari è conosciuto, ed è anche possibile che non ne esistano.

L'avvento dei calcolatori elettronici ha notevolmente accelerato la scoperta dei primi di Mersenne. I primi dodici numeri primi di Mersenne sono stati scoperti prima del XX secolo. Alla fine del millennio i primi di Mersenne conosciuti erano 38; oggi invece se ne conoscono 52 e i diciassette più recenti sono stati scoperti nell'ambito della GIMPS, la Great Internet Mersenne Prime Search, iniziativa che sfrutta le risorse disponibili di migliaia di computer in rete per cercare i primi di Mersenne. Il test di primalità usato dal GIMPS è il Test di Lucas-Lehmer che è molto più veloce dei test generici a parità di ordine di grandezza nel numero; ecco perché in assoluto i record dei più grandi numeri primi conosciuti sono ormai da tempo dei numeri primi di Mersenne. Il più grande numero primo conosciuto (al 22 ottobre 2024) è . Ha più di 41 milioni di cifre decimali ed è stato anch'esso trovato nell'ambito GIMPS:

[2]

Se scritti in base 2, tutti i numeri primi di Mersenne sono repunit primi, ovvero sono rappresentati da stringhe di p cifre unitarie, dove p è l'esponente primo di Mersenne. Negli esempi qui di seguito l'indice denota la base in cui il numero viene espresso:

310 = 112
710 = 1112
3110 = 111112
12710 = 11111112
819110 = 11111111111112.

Si noti che questa proprietà è posseduta quando si sottrae 1 da tutte le potenze di 2 aventi per esponente un numero primo. In sostanza tutti i candidati a essere numeri primi di Mersenne (chiamati come detto sopra semplicemente "numeri di Mersenne") in notazione binaria sono primi repunit.

Si può osservare scorrendo la lista più sotto, che a parte il 3, tutti i numeri primi di Mersenne terminano con 1 o con 7. Questo è dovuto al fatto che le potenze di 2 terminano ciclicamente per 2, 4, 8, 6, quando l'esponente è rispettivamente della forma 1+4k, 2+4k, 3+4k e 4+4k (k numero naturale positivo). Per questa ragione soltanto le potenze di 2 terminanti per 2 e 8 hanno esponenti della forma 1+4k e 3+4k, ovvero hanno esponenti dispari, mentre quelle terminanti per 4 e 6 hanno esponenti pari. Dato infine, che in un numero primo di Mersenne , deve essere numero primo, questo deve essere dispari tranne nel caso di corrispondente all'unico numero di Mersenne terminante con 3 (il numero 3 appunto).

I primi di Mersenne, scritti in base 2, sono anche primi palindromi, primi permutabili e primi di Gauss.

  1. ^ Mauro Fiorentini - Mersenne (numeri di)
  2. ^ GIMPS Milestones Report, su mersenne.org. URL consultato il 21 dicembre 2018.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne