Ottimizzazione convessa

Diagramma di Venn per le classi di problemi di ottimizzazione convessa. (LP: programmazione lineare, QP: programmazione quadratica, SOCP programma conica del secondo ordine, SDP: programmazione semidefinita, CP: programma conica)

L'ottimizzazione convessa è un sottocampo dell'ottimizzazione matematica che studia il problema della minimizzazione delle funzioni convesse (o, in modo equivalente, la massimizzazione di funzioni concave) su insiemi convessi. Molte classi di problemi di ottimizzazione convessa ammettono algoritmi con tempo polinomiale dove l'ottimizzazione matematica in generale è NP-hard.[1][2][3]

  1. ^ Katta Murty e Santosh Kabadi, Some NP-complete problems in quadratic and nonlinear programming, in Mathematical Programming, vol. 39, n. 2, 1987, pp. 117–129, DOI:10.1007/BF02592948.
  2. ^ Sahni, S. "Computationally related problems," in SIAM Journal on Computing, 3, 262--279, 1974.
  3. ^ Quadratic programming with one negative eigenvalue is NP-hard, Panos M. Pardalos and Stephen A. Vavasis in Journal of Global Optimization, Volume 1, Number 1, 1991, pg.15-22.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne