Nella teoria delle decisioni, le curve ROC (Receiver Operating Characteristic, anche note come Relative Operating Characteristic[1]) sono degli schemi grafici per un classificatore binario. Lungo i due assi si possono rappresentare la sensibilità e (1-specificità), rispettivamente rappresentati da True Positive Rate (TPR, frazione di veri positivi) e False Positive Rate (FPR, frazione di falsi positivi). In altre parole, si studiano i rapporti fra allarmi veri (hit rate) e falsi allarmi.
La curva ROC viene creata tracciando il valore del True Positive Rate (TPR, frazione di veri positivi) rispetto al False Positive Rate (FPR, frazione di falsi positivi) a varie impostazioni di soglia. Il tasso di veri positivi è anche noto come sensibilità, richiamo o probabilità di rilevazione[2]. Il tasso di falsi positivi è anche noto come fall-out o probabilità di falsi allarmi[2] e può essere calcolato come (1 - specificità). Può anche essere pensato come un diagramma della potenza in funzione dell'errore di tipo I :quando la prestazione viene calcolata da un solo campione della popolazione, può essere considerata come una stima di queste quantità. La curva ROC è quindi il tasso dei veri positivi in funzione del tasso dei falsi positivi. In generale, se sono note le distribuzioni di sensibilità e 1-specificità, la curva ROC può essere generata tracciando la funzione di distribuzione cumulativa (area sotto la distribuzione di probabilità da alla soglia di discriminazione) della probabilità di rilevamento nell'asse y rispetto alla funzione di distribuzione cumulativa della probabilità di falso allarme sull'asse x.
Il ROC è anche noto come curva Receiver Operating Characteristic, poiché è un confronto tra due caratteristiche operative (TPR e FPR) al cambiare del criterio.[3]