In matematica uno spazio topologico si dice connesso se non può essere rappresentato come l'unione di due o più insiemi aperti non vuoti e disgiunti. In maniera poco formale ma abbastanza intuitiva, possiamo dire che la connessione è la proprietà topologica di un insieme di essere formato da un solo "pezzo". Un sottoinsieme di uno spazio topologico si dice connesso se è uno spazio connesso con la topologia di sottospazio.
La connessione è uno dei principali invarianti usati per distinguere e classificare gli spazi topologici.
I sottospazi connessi massimali di uno spazio topologico X sono le componenti connesse di X. In altre parole, le componenti connesse possono essere viste come i "pezzi" da cui è formato X.