La teoria algebrica dei numeri è una branca della teoria dei numeri che usa le tecniche dell'algebra astratta per studiare gli interi, i razionali e le loro generalizzazioni. In questo modo, i problemi teorici sui numeri possono essere espressi in termini di proprietà di oggetti algebrici come i campi algebrici di numeri e i loro anelli di interi, i campi finiti, e il campo delle funzioni. Queste proprietà, come se un anello ammetta fattorizzazione unica, il comportamento degli ideali e i gruppi di Galois dei campi, possono risolvere problemi di primaria importanza nella teoria dei numeri, come l'esistenza di soluzioni delle equazioni diofantee.