La teoria dello stato di transizione (TST), o teoria del complesso attivato, è la teoria che tratta le velocità delle reazioni elementari assumendo un particolare tipo di equilibrio (quasi-equilibrio) tra reagenti e complessi attivati.[1]
La teoria è utilizzata soprattutto come base qualitativa per comprendere come avvengono le reazioni chimiche. La teoria dello stato di transizione ha avuto meno successo nel suo scopo originale di calcolare le costanti di velocità assoluta di reazione, in dipendenza dal fatto che il calcolo delle velocità assolute di reazione richiede una conoscenza molto accurata delle superfici di energia potenziale,[2] ma è adatta per il calcolo dell'entalpia di attivazione (ΔH‡), dell'entropia di attivazione (ΔS‡), e dell'energia libera di Gibbs di attivazione (ΔG‡) per una particolare reazione la cui costante di velocità sia stata determinata sperimentalmente.
Questa teoria fu sviluppata simultaneamente nel 1935 da Henry Eyring, allora all'Università di Princeton, e da Meredith Gwynne Evans e Michael Polanyi dell'Università di Manchester.[3][4] Prima del suo sviluppo, per determinare le energie per la barriera di reazione veniva ampiamente utilizzata la legge di Arrhenius della velocità. L'equazione di Arrhenius deriva dall'osservazione empirica e ignora ogni considerazione meccanicistica, come nel caso se uno o più intermedi di reazione siano implicati o meno nella conversione totale di un reagente in un prodotto.[5] Di conseguenza furono necessari ulteriori sviluppi per comprendere i due parametri associati a questa legge, il fattore pre-esponenziale (A) e l'energia di attivazione (ΔE‡). La teoria dello stato di transizione, che condusse all'equazione di Eyring, affrontò con successo questi due temi; tuttavia, passarono 46 anni tra la pubblicazione della legge di Arrhenius della velocità nel 1889 e l'equazione di Eyring nel 1935. Durante questo periodo di tempo il lavoro di molti scienziati e ricercatori contribuì significativamente allo sviluppo di questa teoria.