AlexNet

Comparison of the LeNet and AlexNet convolution, pooling and dense layers

AlexNet畳み込みニューラル ネットワーク(CNN)の構造の名前であり、Alex Krizhevsky が博士課程の指導教官である Ilya Sutskever および ジェフェリー・ヒントン と共同で設計した[1] [2]

AlexNet は、2012 年 9 月 30 日に開催された ILSVRC 2012[3] に参加した。AlexNet はエラー率 15.3% で優勝し、次点よりも 10.8% 以上低かった。この論文の主な内容は、モデルの深さが高性能には不可欠であるというもので、計算コストは高くなるものの、GPU を用いて学習することで実現した[2]

  1. ^ The data that transformed AI research—and possibly the world”. 2021年6月4日閲覧。
  2. ^ a b Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). “ImageNet classification with deep convolutional neural networks”. Communications of the ACM 60 (6): 84–90. doi:10.1145/3065386. ISSN 0001-0782. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. 
  3. ^ ILSVRC2012 Results”. 2021年6月4日閲覧。

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne