Hypothesis Riemanniana

Linea rufa partem realem, linea caerulea partem imaginariam valorum functionis ζ(s) monstrat, in linea "criticale" dicta ubi Re(s) = 1/2. ζ(s) = 0 ubi lineae ambo axem horizontalem transeunt: ±14.35, ±21.022, etc.

Hypothesis Riemanniana, est coniectura vel hypothesis in theoria numerorum, dicit omnes numeros complexos s ut ζ(s) = 0, praeter valores triviales, partem realem 1/2 habere; ζ(s) = functio zeta Riemanniana. Si vera est, possumus aestimare quot numeri primi sint minores quam numero quolibet n, h.e. π(n).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne