Kvazitaisyklingasis briaunainis

Kvazitaisyklingosios geometrinės figūros
(3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2
r{3,3} r{3,4} r{3,5} r{3,6} r{3,7} r{3,8} r{3,∞}
Kvazitaisyklingasis briaunainis bei klojinys turi tik dvejopas taisyklingas sienas, kurios yra išsidėsčiusios aplink viršūnę pakaitomis. Jų viršūnės planas yra stačiakampis.

Geometrijoje, kvazitaisyklingasis briaunainis – toks pustaisyklingis briaunainis, kurio sienos griežtai yra tik dvejopi taisyklingieji daugiakampiai, kurie yra išsidėstę aplinkui viršūnę pakaitomis. Šių briaunainių briaunos yra tranzityvios, todėl jie yra taisyklingesni (artimesni taisyklingiems briaunainiams) negu pustaisyklingiai, kurių tik viršūnės yra tranzityvios.

Egzistuoja tik du iškili kvazitaisyklingieji briaunainiai: kuboktaedras ir ikosidodekaedras. Juos taip pavadino Johanas Kepleris, nustatęs, jog šios figūros turi abiejų susijusių dualų sienas – pirmu atveju, kubo ir oktaedro, antru, ikosaedro ir dodekaedro.

Šiems briaunainiams, kadangi juose yra išreikšta visa taisyklingų briaunainių duali pora, galima suteikti vertikalų Šlėfli simbolį arba r{p, q}, iš kurio matyti, kad figūra turi sienas atitinkančias taisyklingą briaunainį {p, q} ir taisyklingą jo dualą {q, p}. Tokiu simboliu žymimas kvazitaisyklingasis briaunainis turės viršūnės planą p.q.p.q (arba (p.q)2).

Apibendrintai, kvazitaisyklingosios figūros viršūnės planas yra (p.q)r, kuriame r (=2 ar daugiau) rodo, kiek kartų abiejų sienų pora pasikartoja aplinkui viršūnę.

Klojiniai, išdėstyti plokštumoje, taip pat gali būti kvazitaisyklingieji, ypač dažniau sutinkami euklidinės erdvės triheksagoniniai klojiniai, kurių viršūnės planas yra (3.6)2 – trikampio ir šešiakampio pora aplinkui viršūnę pasikartoja du kartus. Plačiai nagrinėjami ir atitinkami hiperbolinių plokštumų dariniai, pavyzdžiui, triheptagoniniai klojiniai (3.7)2. Apibendrintai, klojinių viršūnės planas taip pat yra (p.q)2, tik yra apribojimas 1/p+1/q<1/2 (kitaip jie nebebus klojiniai).

Kai kuriuos taisyklingus briaunainius ir klojinius (tuos, kurie turi lyginį sienų skaičių) galima laikyti kvazitaisyklingais, kadangi gretimas sienas teoriškai galima laikyti skirtingomis, pavyzdžiui, dažyti skirtinga spalva, nes jokios paviršiaus savybės nekeis jų vienodo išsidėstymo aplinkui viršūnę. Taigi, taisyklingą figūrą, kurios Šlėfli simbolis yra {p, q}, galima laikyti kvazitaisyklinga, kurios viršūnės planas yra (p.p)q/2, jeigu tik q yra lyginis.

Oktaedrą galima laikyti kvazitaisyklinguoju tetratetraedru (du rinkiniai po keturis trikampius – po trikampę išorinę tetraedro sieną), (3a.3b)2, ir trikampes sienas galima pakaitomis nudažyti dviem spalvomis. Panašiai, kvadratų klojinį (4a.4b)2 galima laikyti kvazitaisyklinguoju ir nudažyti kaip šachmatų lentą. Lygiai taip pat trikampių klojinys (3a.3b)3 gali būti nudažytas dviem spalvomis.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne