In de wiskunde is een bovengrens of majorant van een deelverzameling van een partieel geordende verzameling een element waarvoor geldt dat voor alle . Als er een bovengrens is van , heet een naar boven begrensde deelverzameling van .
Op analoge wijze is een ondergrens of minorant van gedefinieerd als een element waarvoor geldt dat voor alle . Als er een ondergrens is van , heet een naar onder begrensde deelverzameling van .
In de analyse geldt eveneens dat een bovengrens van een functie een getal is, waarvoor geldt dat voor alle . Ook hier geldt het analoge voor de ondergrens: voor alle .
Een functie met een bovengrens heet ook naar boven begrensd. Een functie met een ondergrens heet naar onder begrensd. Een begrensde functie heeft zowel een ondergrens als een bovengrens.