In de differentiaalmeetkunde, een deelgebied van de meetkunde, beeldt de Gauss-afbeelding (vernoemd naar Carl Friedrich Gauss) een oppervlak in de Euclidische ruimte R3 af op de eenheidssfeer S2. Namelijk, gegeven een oppervlak X dat in R3 ligt, is de Gauss-afbeelding een continue afbeelding N: X → S2 dusdanig dat N(p) een eenheidsvector loodrecht op X in p is, namelijk de normaalvector naar X op p.