In de topologie is een gesloten verzameling in een topologische ruimte een deelverzameling van waarvan het complement een open verzameling van is. Het is niet zo dat een verzameling of open, of gesloten is. Er zijn verzamelingen die noch open, noch gesloten zijn, en er zijn verzamelingen die zowel open als gesloten zijn. Ook kan een verzameling in de ene topologie gesloten zijn en in een andere topologie open. Door aan een verzameling al zijn ophopingspunten toe te voegen, ontstaat een gesloten verzameling, de afsluiting van de verzameling. Dat is de kleinste gesloten verzameling waarin de verzameling vervat is.
Uit de eigenschappen, waaraan de open verzamelingen van een topologische ruimte moeten voldoen, volgt dat de vereniging van eindig veel gesloten verzamelingen en de doorsnede van willekeurig veel gesloten verzamelingen ook weer gesloten zijn. Verder zijn de lege verzameling en zelf gesloten.
Door het complementaire karakter van open en gesloten verzamelingen, is het ook mogelijk het begrip 'topologie' te definiëren in termen van gesloten verzamelingen, als een collectie deelverzamelingen met bovengenoemde eigenschappen.