In de wiskundige analyse geeft de integraal van een positieve functie een nauwkeurige betekenis aan het begrip "oppervlakte onder de kromme". Het eenvoudigste integraalbegrip is gebaseerd op de formulering van Bernhard Riemann en wordt daarom soms riemann-integraal genoemd. De lebesgue-integraal, genoemd naar zijn bedenker Henri Lebesgue, is een constructie waarmee meer functies integreerbaar maakt en kan bovendien worden gebruikt over andere domeinen dan de reële getallen.
Stellingen die over limieten van integralen gaan, zijn vaak eenvoudiger te formuleren en te bewijzen in termen van de lebesgue-integraal dan met de riemann-integraal.