In de theoretische informatica vormen de primitief recursieve functies een klasse van totale, berekenbare functies. De klasse is gedefinieerd als de kleinste klasse van functies die de basisfuncties (constante functies, opvolgerfunctie en projectie) bevat, en afgesloten is onder compositie en primitieve recursie. Alle primitief recursieve functies zijn totaal en berekenbaar, maar er bestaan totale en berekenbare functies die niet primitief recursief zijn, zoals de Ackermannfunctie. Als we de klasse van primitief recursieve functies ook onder minimalisering afsluiten, ontstaat de klasse van μ-recursieve functies, die wel precies met de berekenbare functies overeenkomt.