Projectieve ruimte

In wiskunde is een projectieve ruimte een verzameling van elementen die opgevat kan worden als de verzameling van lijnen door de oorsprong van een vectorruimte . Als of , spreekt men respectievelijk van de projectieve lijn en het projectieve vlak. Een projectieve ruimte bestaat als het ware uit alle richtingen in een vectorruimte.

Het idee van een projectieve ruimte houdt verband met perspectief, in het bijzonder met de manier waarop het oog of het objectief van een camera een driedimensionale scène projecteert als een tweedimensionaal beeld. Alle punten die op een zichtlijn liggen, dat wil zeggen op een projectielijn die door het oog of de intreepupil van de camera gaat, worden geprojecteerd op een gemeenschappelijk beeldpunt. In dit geval is de vectorruimte met het oog of de intreepupil van de camera in de oorsprong, en correspondeert de projectieve ruimte met de beeldpunten.

In een grafisch perspectief raken parallelle lijnen in het vlak elkaar in een verdwijnpunt aan de horizon.

Projectieve ruimten kunnen worden bestudeerd als een apart deelgebied binnen de wiskunde, maar worden ook in verschillende toepaste gebieden, vooral in de meetkunde gebruikt. Meetkundige objecten, zoals punten, lijnen of vlakken, kunnen worden weergegeven als elementen in projectieve ruimten, die zijn gebaseerd op homogene coördinaten. Als gevolg daarvan kunnen diverse relaties tussen deze objecten eenvoudiger worden beschreven dan mogelijk is zonder gebruik te maken van homogene coördinaten. Bovendien kunnen verschillende stellingen in de meetkunde consistent en veelomvattender worden gemaakt. Om een voorbeeld te geven, in de standaardmeetkunde van het vlak snijden twee lijnen elkaar altijd in een zeker punt, behalve als deze lijnen parallel aan elkaar lopen. In een projectieve representatie van lijnen en punten bestaat een dergelijk snijpunt echter ook voor parallelle lijnen, en kan dit snijpunt op dezelfde wijze worden berekend als andere snijpunten.

Andere wiskundige deelgebieden waar projectieve ruimten een belangrijke rol spelen zijn de topologie, de theorie van de Lie- en de algebraïsche groepen en hun representatietheorieën.

Projectieve ruimten geven ook de aanleiding tot de studie van polaire ruimten.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne