Een puntgroep met betrekking tot de oorsprong van een euclidische ruimte is een isometriegroep waarvan alle isometrieën de oorsprong als dekpunt hebben. Het is dus een ondergroep van de orthogonale groep. Puntgroepen met betrekking tot de oorsprong zijn van belang als mogelijke symmetriegroep van een figuur in de betreffende ruimte. Het zijn voorbeelden van de in de wiskunde gedefinieerde groepen. De naam puntgroep slaat op het symmetriepunt.
Puntgroepen worden in de scheikunde gebruikt in de theorie van de chemische binding. De kristallografie beschrijft de kristalstructuur van verschillende materialen en maakt daarvoor gebruik van de röntgenkristallografie en de spectroscopie. De kristalstructuur wordt onder andere met behulp van puntgroepen beschreven. Puntgroepen kunnen op verschillende manieren worden weergegeven, bijvoorbeeld met een grafisch programma.[1] Ze beschrijven de symmetrie van een molecuul. Sommige moleculen hebben zo'n symmetriepunt en dit maakt dat puntgroepen in de scheikunde veel toepassing vinden. Translaties van het molecuul blijven daarbij dus buiten beschouwing. Onder andere is het chirale karakter van een molecuul of molecuulfragment gerelateerd aan de puntgroep.
Puntgroepen worden vooral binnen de kristallografie gebruikt, dus in drie dimensies. Het is mogelijk ze op dezelfde manier voor twee dimensies te definiëren als dat voor drie dimensies is gedaan. De bewerkingen in de puntgroep in twee dimensies, van een rozet, kunnen alleen de rotatie om een punt en de spiegeling zijn. Hoewel in drie dimensies alle bewerkingen uit de rotaties om een omwentelingsas en de spiegeling kunnen worden samengesteld, worden er in drie dimensies meestal vijf bewerkingen onderscheiden, die een meetkundige figuur op zichzelf afbeelden.
De symmetrie-bewerkingen binnen één puntgroep kunnen wiskundig eeneenduidig met orthogonale matrices worden beschreven, waarbij de bijbehorende matrixvermenigvuldiging is gedefinieerd als het na elkaar uitvoeren van twee symmetriebewerkingen. Dit heeft tot gevolg dat de matrix-representaties van alle symmetriebewerkingen in een puntgroep een matrixgroep vormen, waarop de representatietheorie van toepassing is. De representatietheorie maakt veelvuldig gebruik van de indeling in nevenklassen en daarnaast ook van de correlatie tussen een groep en zijn ondergroepen. De ondergroepen hebben een lagere symmetrie dan de groep zelf. Behalve een indeling van een puntgroep in ondergroepen, kent men ook een indeling in conjugatieklassen.