Fermattala, som er oppkalla etter den franske matematikaren Pierre de Fermat, er positive heiltal av forma
der n er 0 eller eit positivt heiltal. Dei fyrste åtte fermattala er:
Om 2n + 1 er eit primtal og n > 0, kan det visast at n må vera ein toerpotens. (Om n = ab der 1 < a, b < n og b er eit oddetal, er 2n + 1 ≡ (2a)b + 1 ≡ (−1)b + 1 ≡ 0 (mod 2a + 1).) Alle primtal av forma 2n + 1 er med andre ord eit Fermattal og vert kalla Fermatprimtal. Dei einaste kjente fermatprimtala er F0,...,F4. For faktorising av fermattal sjå [1]