Eit koordinatsystem er eit system der kvart punkt i eit n-dimensjonalt rom vert tilvist eit tal eller ein skalar. Dette omgrepet er ein del av teorien kring mangfald.[1] «Skalarar» tyder i mange tilfelle reelle tal, men ut i frå samanhengen kan dei òg vere komplekse tal eller element i ein annan kommutativ ring. For kompliserte rom er det ofte ikkje mogeleg å nytte eit konsistent praktisk koordinatsystem for heile rommet. I slike tilfelle må ein nytte forskjellige koordinatsystem, kalla grafar, i lag for å danna eit atlas som dekkjer heile rommet. Eit enkelt døme (som dominerer terminologien) er jordoverflata).
Sjølv eit spesifikt koordinatsystem er nyttig for numeriske utrekningar, eksisterer rommet i seg sjølv uavhengig av kva koordinatsystem ein vel å nytte. Slik sett er ein koordinat i eit rom berre ein funksjon frå rommet (eller ein del av rommet) til skalarane. Når eit rom har kompliserte strukturarar, vel ein (som regel) å sjå på funksjonane som høver med denne strukturen. Døme på slik er:
Koordinatar i eit rom kan transformerast naturleg under grupper av automorfiar i rommet, og settet med alle koordinatar er ein kommutativ ring kalla koordinatringen i rommet.
I uformell bruk kan koordinatsystem ha singularitetar: desse er punkt der ein eller fleire koordinatar ikkje er definerte. Til dømes er origo i planet i polarkoordinatsystemet (r,θ) ein singularitet, fordi at sjølv om den radielle koordinaten har ein definert verdi (r = 0) i origio, kan θ vere kva vinkel som helst, så funksjonen er ikkje definert her.