Charakter Dirichleta

Przykład charakteru Dirichleta

W analitycznej teorii liczb funkcja arytmetyczna nazywana jest charakterem Dirichleta modulo [1], jeśli dla ustalonej liczby naturalnej i wszystkich liczb całkowitych spełnia warunki:

  1. tzn. jest całkowicie multiplikatywna.
  2. jeśli oraz jeśli gdzie oznacza największy wspólny dzielnik i
  3. – ma okres

Najprostszym przykładem charakteru Dirichleta jest charakter pryncypialny, zadany przez

Najczęściej jest on zapisywany jako .

W ogólności, dla każdej liczby całkowitej istnieje dokładnie (tocjent) różnych charakterów Dirichleta mod . Są to (lub ) dane przez dla pewnej liczby całkowitej zależnej od , i dla oraz dla .

  1. Tom M. Apostol, Introduction to Analytic Number Theory, „Undergraduate Texts in Mathematics”, 1976, DOI10.1007/978-1-4757-5579-4, ISSN 0172-6056 [dostęp 2023-08-16].

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne