EXPTIME

W obliczeniowej teorii złożoności klasa złożoności EXPTIME (czasami nazywana EXP lub DEXPTIME) jest zbiorem wszystkich problemów decyzyjnych, które mają wykładniczy czas wykonywania, tj. są rozwiązywalne przez deterministyczną maszynę Turinga w czasie O (2p(n)), gdzie p(n) jest funkcją wielomianową n.

Definicja używająca DTIME:

Wiemy, że:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE,

a także według twierdzenia o hierarchii czasu i twierdzenia o hierarchii przestrzeni, że

P ⊊ EXPTIME, NP ⊊ NEXPTIME and PSPACE ⊊ EXPSPACE,

więc co najmniej jedna z pierwszych trzech inkluzji i co najmniej jedna z trzech ostatnich inkluzji muszą być właściwe, ale nie wiadomo, które z nich są. Większość ekspertów uważa, że wszystkie inkluzje są prawidłowe. Wiadomo również, że jeśli P = NP, to EXPTIME = NEXPTIME, klasa problemów możliwych do rozwiązania w czasie wykładniczym przez niedeterministyczną maszynę Turinga[1]. Dokładniej, EXPTIME ≠ NEXPTIME wtedy i tylko wtedy, gdy istnieją rzadkie języki w NP, które nie są w P[2].

EXPTIME można również przeformułować jako klasę przestrzeni APSPACE, problemy, które można rozwiązać za pomocą naprzemiennej maszyny Turinga w przestrzeni wielomianowej. Jest to jeden ze sposobów, aby zobaczyć PSPACE ⊆ EXPTIME, ponieważ naprzemienna maszyna Turinga jest co najmniej tak potężna jak deterministyczna maszyna Turinga[3].

  1. Christos Papadimitriou: Computational Complexity. ISBN 0-201-53082-1.
  2. Juris Hartmanis, Neil Immerman, Vivian Sewelson, Sparse Sets in NP−P: EXPTIME versus NEXPTIME, „Information and Control”, 65 (2/3), At ACM Digital Library, 1983, s. 382–391, DOI10.1145/800061.808769, ISBN 0-89791-099-0.
  3. Papadimitriou (1994), section 20.1, corollary 3, page 495.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne