Ekstremum funkcji (l. mn. ekstrema; z łac. extrēmus – najdalszy, ostatni) – maksymalna lub minimalna wartość funkcji[1].
Obrazowo: Na powierzchni Ziemi maksimum globalne wysokości nad poziomem morza występuje na szczycie Mount Everestu, maksimum lokalnym jest szczyt każdego pagórka. Jeśli szczyt pagórka jest poziomy i płaski (a także niekiedy w innych przypadkach[b]), nie będzie to maksimum lokalne właściwe.
Istnieją funkcje nieposiadające ekstremów lokalnych ani globalnych, np. funkcja
Poszukiwanie ekstremów jest ważne w praktycznych zastosowaniach matematyki, na przykład w technice i statystyce. Wiele zagadnień optymalizacyjnych sprowadza się do poszukiwania ekstremów odpowiednich funkcji, jak na przykład funkcji kosztu, albo miary jakości dla różnych parametrów danego urządzenia.
Teoria ekstremów w naturalny sposób ma silny związek z teorią nierówności: wiele problemów i twierdzeń można formułować równoważnie zarówno w języku ekstremów, jak i nierówności, co rzuca światło na obie te dziedziny.
<ref>
dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>