Ekstremum funkcji

Ekstrema lokalne funkcji zaznaczone kolorem niebieskim (właściwe maksimum lokalne) i czerwonym (właściwe minimum lokalne)

Ekstremum funkcji (l. mn. ekstrema; z łac. extrēmus – najdalszy, ostatni) – maksymalna lub minimalna wartość funkcji[1].

  • Funkcja przyjmuje w punkcie maksimum lokalne (odpowiednio: minimum lokalne), jeśli w pewnym otwartym[a] otoczeniu tego punktu (np. w pewnym przedziale otwartym) funkcja nigdzie nie ma wartości większych (odpowiednio: mniejszych).
  • Jeśli dodatkowo w pewnym otwartym sąsiedztwie punktu funkcja nie ma również wartości równych to jest to maksimum (odpowiednio: minimum) lokalne właściwe.
  • Minima i maksima lokalne są zbiorczo nazywane ekstremami lokalnymi.
  • Największa i najmniejsza wartość funkcji w całej dziedzinie nazywane są odpowiednio maksimum i minimum globalnym, a zbiorczo ekstremami globalnymi.

Obrazowo: Na powierzchni Ziemi maksimum globalne wysokości nad poziomem morza występuje na szczycie Mount Everestu, maksimum lokalnym jest szczyt każdego pagórka. Jeśli szczyt pagórka jest poziomy i płaski (a także niekiedy w innych przypadkach[b]), nie będzie to maksimum lokalne właściwe.

Istnieją funkcje nieposiadające ekstremów lokalnych ani globalnych, np. funkcja

Poszukiwanie ekstremów jest ważne w praktycznych zastosowaniach matematyki, na przykład w technice i statystyce. Wiele zagadnień optymalizacyjnych sprowadza się do poszukiwania ekstremów odpowiednich funkcji, jak na przykład funkcji kosztu, albo miary jakości dla różnych parametrów danego urządzenia.

Teoria ekstremów w naturalny sposób ma silny związek z teorią nierówności: wiele problemów i twierdzeń można formułować równoważnie zarówno w języku ekstremów, jak i nierówności, co rzuca światło na obie te dziedziny.

  1. ekstremum funkcji, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-03-12].


Błąd w przypisach: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>
BŁĄD PRZYPISÓW

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne