Element neutralny

Element neutralny – element struktury algebraicznej, który dla danego działania dwuargumentowego przyłożony do dowolnego elementu nie zmieni go.

Pojęcie to pojawia się w definicjach podstawowych struktur algebraicznych takich jak:

Rozważa się też ich uogólnienia jak półgrupa, quasi-grupa, grupoid, półpierścień czy krata, w których taki element nie musi istnieć.

  1. grupa, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].
  2. monoid, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].
  3. lupa, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].
  4. ciało, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].
  5. pierścień, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].
  6. przestrzeń liniowa, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-07-21].
  7. moduł, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].
  8. algebra Boole’a, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2024-09-23].

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne