Enzymy

Model struktury lipooksygenazy ze związanym substratem. Enzym ten katalizuje produkcję lipidowych cząsteczek sygnałowych

Enzymy (z gr. ἔνζυμον, od ἔν en „w” i ζύμη dzýmē „zaczyn (za)kwas”)[1] – wielkocząsteczkowe, w większości białkowe[a], katalizatory przyspieszające specyficzne reakcje chemiczne poprzez obniżenie ich energii aktywacji[2].

Niemal wszystkie reakcje chemiczne związane z funkcjonowaniem organizmów żywych (a także wirusów) wymagają współudziału enzymów, by osiągnąć wystarczającą wydajność. Enzymy są wysoce specyficzne wobec substratów i wobec tego dany enzym katalizuje zaledwie kilka reakcji spośród wielu możliwych dla danych substratów. W ten sposób enzymy determinują procesy metaboliczne i biochemiczne związane z funkcjonowaniem organizmów żywych.

Jak wszystkie katalizatory, enzymy obniżają energię aktywacji (Ea lub ΔG) reakcji chemicznej, przyspieszając w ten sposób przebieg reakcji (patrz: Struktury i mechanizmy działania). Większość reakcji enzymatycznych (tj. z udziałem enzymów) przebiega miliony razy szybciej niż ich niekatalizowane enzymatycznie odpowiedniki[3]. Jednym z najszybciej działających znanych enzymów jest anhydraza węglanowa. Jedna cząsteczka tego enzymu potrafi w sprzyjających warunkach w jedną sekundę uwodnić od 104 do 106 cząsteczek dwutlenku węgla[4]. Z kolei jedna cząsteczka jednego z najwolniejszych enzymów – lizozymu, katalizuje 1 akt elementarny co 2 sekundy[5]. Jak wszystkie katalizatory, również enzymy nie zużywają się w trakcie przebiegu reakcji, a także nie wpływają na ich równowagę. Enzymy różnią się od zwykłych katalizatorów, przejawiając znacznie większą specyficzność substratową. Aktywność enzymatyczna może być zatrzymana lub obniżona przez inne cząsteczki – inhibitory. Wiele leków i trucizn jest inhibitorami enzymów. Z kolei aktywatory enzymatyczne to cząsteczki zwiększające aktywność enzymów. Ponadto aktywność enzymów zależy od parametrów fizykochemicznych środowiska reakcji, takich jak: temperatura, pH, siła jonowa, obecność niektórych jonów i innych.

Znane są także biokatalizatory niebiałkowe[a]. Należą do nich rybozymy, cząsteczki RNA o własnościach katalitycznych[6] oraz deoksyrybozymy (DNAzymy) – fragmenty DNA zdolne do katalizowania pewnych reakcji[7][8]. Enzymy niebiałkowe charakteryzują się nieco innymi mechanizmami reakcji i mniejszą różnorodnością katalizowanych reakcji, jednak ich kinetyka i mechanika działania może być analizowana i klasyfikowana za pomocą tych samych metod, jakie są używane dla enzymów białkowych. Istnieją ponadto sztucznie stworzone cząsteczki, zwane sztucznymi enzymami, które przejawiają podobną do enzymatycznej aktywność katalityczną[9].

Liczne enzymy znalazły zastosowanie przemysłowe (patrz: Zastosowanie przemysłowe), m.in. w przemyśle spożywczym czy chemii leków. Wiele produktów używanych w gospodarstwach domowych zawiera enzymy w celu podniesienia wydajności ich działania, jak proszki do prania czy enzymatyczne wywabiacze do plam. Enzymy są także powszechnie używane we współczesnych naukach biologicznych i medycznych oraz w diagnostyce medycznej.

Badaniem enzymów i ich działania zajmuje się enzymologia.

  1. Władysław Kopaliński: enzymy. [w:] Słownik Wyrazów Obcych [on-line]. [dostęp 2014-03-13]. [zarchiwizowane z tego adresu (2015-03-31)].
  2. Enzymes, [w:] A.D. McNaught, A. Wilkinson, Compendium of Chemical Terminology (Gold Book), S.J. Chalk (akt.), International Union of Pure and Applied Chemistry, wyd. 2, Oxford: Blackwell Scientific Publications, 1997, DOI10.1351/goldbook.E02159, ISBN 0-9678550-9-8 (ang.).
  3. 8.1. Enzymes Are Powerful and Highly Specific Catalysts. W: J.M. Berg, J.L Tymoczko, L Stryer: Biochemistry, 5th edition. New York: 2002. ISBN 0-7167-3051-0. [dostęp 2016-06-16].
  4. Lindskog S. Structure and mechanism of carbonic anhydrase. „Pharmacology & therapeutics”. 1 (74), s. 1–20, 1997. DOI: 10.1016/S0163-7258(96)00198-2. PMID: 9336012. 
  5. publikacja w otwartym dostępie – możesz ją przeczytać Daniel R.M., Finney J.L., Réat V., Dunn R., Ferrand M., Smith J.C. Enzyme dynamics and activity: time-scale dependence of dynamical transitions in glutamate dehydrogenase solution. „Biophys J”. 4 (77), s. 2184–2190, 1999. DOI: 10.1016/S0006-3495(99)77058-X. PMID: 10512837. PMCID: PMC1300498. 
  6. Lilley D.M. Structure, folding and mechanisms of ribozymes. „Curr Opin Struct Biol”. 3 (15), s. 313–323, 2005. DOI: 10.1016/j.sbi.2005.05.002. PMID: 15919196. 
  7. Breaker R.R., Joyce G.F., Hoyce G.F. A DNA enzyme that cleaves RNA. „Chem Biol”. 4 (1), s. 223–229, 1998. DOI: 10.1016/1074-5521(94)90014-0. PMID: 9383394. 
  8. Silverman S.K. Deoxyribozymes: DNA catalysts for bioorganic chemistry. „Org Biomol Chem”, s. 2701–2706, 2004. DOI: 10.1039/B411910J. PMID: 15455136. [zarchiwizowane z adresu 2009-09-19]. 
  9. Groves J.T. Artificial enzymes. The importance of being selective. „Nature”. 389 (6649), s. 329–330, 1997. DOI: 10.1038/38602. PMID: 9311771. 


Błąd w przypisach: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>
BŁĄD PRZYPISÓW

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne