Hipoteza Riemanna

Odcinek podkastu Nauka XXI wieku
Wykres funkcji dzeta Riemanna dla x > 1
Wykres części rzeczywistej i urojonej funkcji dzeta Riemanna dla s = 0,5 + i * t

Hipoteza Riemanna – sformułowana w 1859 roku hipoteza[1], dotycząca badanej przez niemieckiego matematyka Bernharda Riemanna funkcji dzeta. Jest jednym z największych nierozwiązanych problemów w matematyce obok hipotezy Goldbacha. Mówi ona, że wszystkie tzw. nietrywialne zera (nierzeczywiste) tej funkcji mają część rzeczywistą równą ½[2]. Problem ten ma duże znaczenie dla całej matematyki – w szczególności dla teorii liczb, ale również dla statystyki oraz fizyki. Jest jednym z problemów milenijnych, ogłoszonych przez Instytut Matematyczny Claya w roku 2000[3]. Clay Mathematics Institute (CMI) ufundował nagrodę w wysokości miliona dolarów za dowód lub obalenie tej hipotezy. Hipoteza Riemanna jest ósmym problemem z listy problemów Hilberta.

  1. Bernhard Riemann: Über die Anzahl der Primzahlen unter einer gegebenen Größe. (19. Oktober 1859). In: Monatsberichte der Königlichen Preußischen Akademie der Wissenschaften zu Berlin. 1860, S. 671–680.
  2. Riemanna hipoteza, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-09-14].
  3. Millennium problems, na stronie claymath.org (ang.).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne