Iloczyn kompleksowy – dwuargumentowe działanie wewnętrzne określone na niepustych podzbiorach danej grupy.
Pojęcie kompleksu ma na celu wykluczenie z rozważań mało interesującego z algebraicznego punktu widzenia podzbioru pustego (najmniejszą podgrupą w grupie jest jednoelementowa podgrupa trywialna). Unifikująca notacja iloczynu kompleksów, którymi są tak podgrupy, jak i warstwy danej grupy, skraca język opisu struktury grupy: ułatwia definicję podgrupy permutowalnej, opis konstrukcji grupy ilorazowej, czy iloczynów wewnętrznych (zob. osobną sekcję).
Nie wykluczając przypadku zbioru pustego otrzymuje się iloczyn podzbiorów, przy czym iloczyn jakiegokolwiek podzbioru ze podzbiorem pustym daje podzbiór pusty.