Interferencja RNA, RNAi (od ang.RNA interference) – zjawisko wyciszania albo wyłączenia ekspresji genu przez dwuniciowy RNA (dsRNA, od ang. double stranded RNA) o budowie i sekwencji zbliżonej do sekwencji DNA wyłączanego genu. Wyłączenie może się odbywać na trzech poziomach: a) degradacja mRNA; b) blokowanie translacji mRNA; c) prawdopodobnie również przez indukcję epigenetycznego wyciszenia genu.
Bezpośrednimi mediatorami interferencji RNA są małe, o długości 21-23 par zasad, dwuniciowe RNA, będące produktem obróbki większych fragmentów RNA przez specjalne nukleazy.
Za degradację (zniszczenie) mRNA odpowiedzialne są oligonukleotydy tzw. małe interferujące RNA (siRNA, z ang. small interfering RNA), charakteryzują się stuprocentową homologią sekwencji do ich celu. Wchodzą w skład specjalnej rybonukleazy i nadają jej specyficzność do sekwencji. Mechanizm siRNA powstał najprawdopodobniej jako mechanizm obronny przed dwuniciowymi wirusami RNA (dsRNA). W konsekwencji degradacji mRNA odpowiedni gen jest wyciszany, bo nie powstaje kodowane przez niego białko.
W przypadku mechanizmu interferencji z translacją mRNA, mediatorami są tzw. mikro-RNA (miRNA). miRNA kodowane są przez genom komórki, jak normalne geny. Prekursorem są niewielkie RNA, o strukturze spinki do włosów, które ulegają obróbce podobnie do siRNA. Wchodzą w skład kompleksów rybonukleoproteinowych blokujących specyficznie translację mRNA i nadają im specyficzność. W odróżnieniu od siRNA, miRNA nie posiadają 100%-owej homologii sekwencji do docelowego mRNA. miRNA są zaangażowane w negatywną regulację ekspresji genów podczas rozwoju.
Za odkrycie zjawiska interferencji RNA amerykańcy naukowcy Andrew Z. Fire i Craig C. Mello otrzymali w 2006 roku Nagrodę Nobla w dziedzinie medycyny i fizjologii. Dzięki badaniom i odkryciom noblistów i innych zespołów poznano fundamentalny mechanizm kontroli przepływu informacji genetycznej, które może mieć zastosowanie w terapii genowej. Już udało się wyciszyć gen odpowiedzialny za podwyższony poziom cholesterolu u zwierząt. W przyszłości będzie można opracować skuteczne metody leczenia chorób genetycznych i nowotworowych, a także nowe odmiany zwierząt i roślin hodowlanych.