Metoda wyczerpywania (łac. methodus exhaustionibus) – metoda obliczania pola powierzchni figury geometrycznej za pomocą wpisania w nią ciągu wzajemnie rozłącznych wielokątów o znanej powierzchni, których suma pól zbliża się do powierzchni badanej figury.
Zastosowanie metody wyczerpywania wymaga zazwyczaj zastosowania rodzaju dowodu nie wprost (łac. reductio ad absurdum). Polega on na tym, że pole powierzchni części figury znajduje się za pomocą porównania z polem powierzchni innej części drogą kolejnych przybliżeń (aż do momentu, w którym różnica między oboma polami staje się pomijalna). Następnie należy założyć, że powierzchnia sprawdzanej figury jest większa niż suma powierzchni wpisanych figur i dowieść błędności takiego założenia, a następnie dowieść błędności założenia przeciwnego, że pole badanej figury jest mniejsze niż suma pól figur wpisanych.
Choć rozwój rachunku różniczkowego wyparł metodę z użycia, pomysł wykorzystywany jest do dzisiaj w nieco zmodyfikowanej formie w matematycznej teorii miary, np. przy obliczaniu miary Lebesgue’a oraz całki Lebesgue’a.