Odchylenie standardowe – klasyczna miara zmienności, obok średniej arytmetycznej najczęściej stosowane pojęcie statystyczne.
Intuicyjnie rzecz ujmując, odchylenie standardowe mówi, jak szeroko wartości jakiejś wielkości (na przykład wieku, inflacji, kursu walutowego) są rozrzucone wokół jej średniej[a]. Im mniejsza wartość odchylenia tym obserwacje są bardziej skupione wokół średniej.
Odchylenie standardowe jest pierwiastkiem kwadratowym z wariancji[1]. Pojęcie odchylenia zostało wprowadzone przez pioniera statystyki, Karla Pearsona, w 1894 roku[b].
Wyróżnia się:
- odchylenie standardowe zmiennej losowej, będące właściwością badanego zjawiska. Daje się ono obliczyć na podstawie ścisłych informacji o rozkładzie zmiennej losowej[c]. Rozkład ten w praktycznych badaniach nie jest zwykle znany.
- odchylenie standardowe w populacji, które jest liczbą dającą się obliczyć dokładnie, jeśli znane byłyby wartości zmiennej dla wszystkich obiektów populacji; odpowiada odchyleniu zmiennej losowej, której rozkład jest identyczny z rozkładem w populacji.
- odchylenie standardowe z próby, które jest oszacowaniem odchylenia standardowego w populacji na podstawie znajomości wyłącznie części jej obiektów, czyli właśnie próby losowej. Stosowane do tego celu wzory nazywane są estymatorami odchylenia standardowego.
Błąd w przypisach: Istnieje znacznik <ref>
dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>
BŁĄD PRZYPISÓW