Symetria osiowa

Obraz figury w symetrii osiowej względem prostej

Symetria osiowa, symetria względem osi, odbicie zwierciadlane (lustrzane)[1]odwzorowanie geometryczne płaszczyzny lub przestrzeni, które dla ustalonej osi tj. prostej, każdemu punktowi swojej dziedziny przyporządkowuje taki punkt że punkty i

  • wyznaczają prostą przecinającą prostopadle
  • leżą w równej odległości od osi po jej przeciwnych stronach.

Symetrię względem osi oznacza się najczęściej jako

Z definicji bezpośrednio wynika, że punktami stałymi symetrii osiowej są wszystkie punkty prostej i tylko one. Dowolna symetria osiowa jest inwolucją, tzn. jest identyczna z odwzorowaniem do niej odwrotnym.

Fakt, że punkt jest obrazem punktu można też zapisać korzystając z pojęcia wektora: gdzie punkt R jest rzutem prostokątnym punktu na prostą

Figurę geometryczną która jest swoim obrazem w symetrii osiowej nazywa się figurą geometryczną osiowo symetryczną (lub mówi się, że figura ma oś symetrii). Prosta jest osią symetrii figury [2].

  1. symetria osiowa, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-10].
  2. oś symetrii, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-03-12].

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne