Systemy pozycyjne

Systemy pozycyjne – metody zapisywania liczb (in. systemy liczbowe) w taki sposób, że w zależności od pozycji danej cyfry w ciągu, oznacza ona wielokrotność potęgi pewnej liczby uznawanej za bazę danego systemu. Np. powszechnie używa się systemu dziesiętnego, w którym za bazę przyjmuje się liczbę dziesięć. Tym samym napis 46 532 oznacza

System pozycyjny umożliwia też zapisywanie ułamków, przy czym liczby wymierne składają się albo ze skończonej liczby znaków, albo są od pewnego miejsca okresowe. Np. 3,1415 rozumiemy jako a jako

Obok dziesiętnego systemu liczbowego, używanego w codziennym życiu, warto wymienić też:

Zapis liczb ujemnych wymaga zwykle użycia dodatkowego znaku („−”). Aby tego uniknąć można przyjąć za bazę liczbę ujemną (np. −2), wprowadzić cyfry o wartości ujemnej (np. zestaw cyfr −1, 0, +1 przy bazie 3), albo zastosować specjalny kod (np. U2).

Zestawienie przykładowych systemów pozycyjnych
Trójkowy zrównoważony
o cyfrach 0, +(1), −(1)
Dwójkowy O bazie −4 Szesnastkowy Dziesiętny
−++− −10000 1300 −10 −16
−++0 −1111 1301 −F −15
−+++ −1110 1302 −E −14
−−− −1101 1303 −D −13
−−0 −1100 30 −C −12
−−+ −1011 31 −B −11
−0− −1010 32 −A −10
−00 −1001 33 −9 −9
−0+ −1000 20 −8 −8
−+− −111 21 −7 −7
−+0 −110 22 −6 −6
−++ −101 23 −5 −5
−− −100 10 −4 −4
−0 −11 11 −3 −3
−+ −10 12 −2 −2
−1 13 −1 −1
0 0 0 0 0
+ 1 1 1 1
+− 10 2 2 2
+0 11 3 3 3
++ 100 130 4 4
+−− 101 131 5 5
+−0 110 132 6 6
+−+ 111 133 7 7
+0− 1000 120 8 8
+00 1001 121 9 9
+0+ 1010 122 A 10
++− 1011 123 B 11
++0 1100 110 C 12
+++ 1101 111 D 13
+−−− 1110 112 E 14
+−−0 1111 113 F 15
+−−+ 10000 100 10 16

Obok opisanych powyżej potęgowych systemów pozycyjnych istnieje cały szereg systemów pozycyjnych o innej konstrukcji. Są to np.:


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne