CRISPR/Cas

Este artigo faz parte de uma série sobre CRISPR







Em biologia molecular, CRISPR/Cas é uma ferramenta de edição de genoma que consiste em dois componentes: uma transcrição do locus CRISPR que resulta em curtos fragmentos de RNA com capacidade de desempenhar o reconhecimento de um DNA exógeno específico e atua como um guia a um local particular no genoma, e uma proteína chamada Cas9 que corta o DNA nesse local.

Para efeitos de edição de gene, os cientistas podem controlar onde a proteína parte o genoma, inserir um novo gene no corte e juntá-lo novamente.[1] A "faca" é uma proteína chamada Cas9 (A estrutura de cristal de S. pyogenes que, em 2012, os pesquisadores mostraram que poderiam usá-la como um bisturi para realizar microcirurgia em genes).[2][3] Cientistas podem usar CRISPR/Cas9 não somente para agir como um par de tesouras moleculares para precisamente cortar ou editar seções específicas de DNA, mas, recentemente, começaram a manipular CRISPR/Cas9 variantes como instrumentos de regulação gênica, a fim de reversivelmente controlar genes ativados ou desativados[4] Em 2017, cientistas descobriram novos tipos de sistemas CRISPR/Cas de imunidade bacteriana adaptativa. Os genes desses sistemas são bastante incomuns, e os sistemas CRISPR/Cas são diferentes dos estudados anteriormente. Os cientistas acreditam que todos os principais tipos de sistemas CRISPR/Cas foram classificados.[5] Essa técnica permite que os pesquisadores pesquisem e substituam seções inteiras de filamentos de DNA, tudo sem quebras ou danos ao DNA doador. Com esse método, os pesquisadores esperam corrigir com precisão e eficiência até 89% das doenças genéticas causadoras de doenças conhecidas.[6]

A metodologia CRISPR/Cas ofuscou rapidamente TALEN, ZFN,[7] Gene Cutter BRCA1 e outras ferramentas de edição.[8] Esta técnica de "edição" do genoma humano, em 2015, foi usada pela primeira vez para "cortar e colar" os genes de um tipo de células imunitárias chave envolvidas na proteção do organismo contra uma ampla gama de doenças, que vai de vírus como gripe ou ebola, diabetes, ectrodactilia, HIV a cancer.[9][10][11]

  1. «Pesquisadores conseguem modificar DNA de células vivas». Consultado em 12 de agosto de 2015 
  2. CRISPRS AND CANCER por Terrence P McGarty em "White Paper No 111" de abril/2014
  3. Cong, L., et al, Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, Vol. 339 15 February 2013
  4. New CRISPR-Cas9 Strategy Edits Genes Two Ways publicado pelo "Wyss Institute" em 9 de setembro de 2015.
  5. Diversity and evolution of class 2 CRISPR–Cas systems por Sergey Shmakov, et al, Nature Reviews Microbiology 15, 169–182 (2017) - doi:10.1038/nrmicro.2016.184
  6. CNN, Jessie Yeung. «New gene editing technology could correct 89% of genetic defects». CNN. Consultado em 24 de outubro de 2019 
  7. Kim, YG; Cha, J.; Chandrasegaran, S. (1996). «Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain». Proc Natl Acad Sci USA. 93 (3): 1156–60. Bibcode:1996PNAS...93.1156K. PMC 40048Acessível livremente. PMID 8577732. doi:10.1073/pnas.93.3.1156 
  8. CRISPR, the disruptor - A powerful gene-editing technology is the biggest game changer to hit biology since PCR. But with its huge potential come pressing concerns. por Heidi Ledford em 3 de Junho de 2015 (Nature Publishing Group)
  9. Lewis, Tanya. «Scientists Program CRISPR to Fight Viruses in Human Cells». Scientific American (em inglês). Consultado em 24 de outubro de 2019 
  10. «Breakthrough announced in 'editing' DNA to fight off deadly illness». Consultado em 30 de julho de 2015 
  11. SILICON VALLEY’S TECH ELITE ZOOM IN ON CRISPR (2018)

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne