Corpo negro

À medida que a temperatura diminui, o pico da curva da radiação de um corpo negro se desloca para menores intensidades e maiores comprimentos de onda. O gráfico de emissão de radiação de um corpo negro também é comparado com o modelo clássico de Rayleigh e Jeans

Na Física, um corpo negro é um objeto hipotético que absorve toda a radiação eletromagnética que nele incide: nenhuma luz o atravessa e nem é refletida. Um corpo com essa propriedade, em princípio, não poderia ser visto, daí o seu nome.[1] Apesar disso, corpos negros emitem radiação, o que permite determinar sua temperatura. Em equilíbrio termodinâmico, um corpo negro ideal irradia energia na mesma taxa que a absorve,[1] sendo essa uma das propriedades que o tornam uma fonte ideal de radiação térmica.[2] Na natureza não existem corpos negros perfeitos, já que nenhum objeto consegue ter absorção e emissão perfeitas.

Podemos imaginar uma caixa opaca, com um pequeno buraco. Uma radiação incidente sobre o buraco é refletida seguidamente pelas paredes internas e dificilmente conseguirá sair pelo buraco da caixa mas se aumentássemos a temperatura no interior dessa caixa uma quantidade de radiação sairia pelo buraco, o que demonstra que o corpo negro ao ser aquecido emite luz. Com essa ideia podemos comparar essa caixa opaca a um corpo negro ideal.[3]

Independente da sua composição, verifica-se que todos os corpos negros à mesma temperatura T emitem radiação térmica com mesmo espectro. Do mesmo modo, todos os corpos, com temperatura acima do zero absoluto, emitem radiação térmica. Conforme a temperatura da fonte luminosa aumenta, o espectro de corpo negro apresenta picos de emissão em menores comprimentos de onda, partindo das ondas de rádio, passando pelas micro-ondas, infravermelho, luz visível, ultravioleta, raios X e radiação gama. Em temperatura ambiente (cerca de 300 K), corpos negros emitem na região do infravermelho do espectro. À medida que a temperatura aumenta algumas centenas de kelvins, corpos negros começam a emitir radiação em comprimentos de onda visíveis ao olho humano (compreendidos entre 380 a 780 nanômetros). A cor com maior comprimento de onda é o vermelho, e as cores seguem como no arco-íris, até o violeta, que tem o menor comprimento de onda do espectro visível.

Um bom modelo de corpo negro são as estrelas, como o Sol, no qual a radiação produzida em seu interior é expelida para o universo e consequentemente aquece o nosso planeta. A cor branca do Sol corresponde a uma temperatura superficial da ordem de 5 750 K.[4][5][6]

Um corpo negro ideal em equilíbrio térmico possui duas propriedades principais:[7]

  1. É um emissor ideal: em cada frequência, ele emite tanta ou mais energia radiante térmica do que qualquer outro corpo à mesma temperatura.
  2. É um emissor difuso: medido por unidade de área perpendicular à direção, a energia é irradiada isotropicamente, independentemente da direção.

Materiais reais emitem energia em uma fração — chamada de emissividade — dos níveis de energia de um corpo negro. Por definição, um corpo negro em equilíbrio térmico tem uma emissividade ε = 1. Uma fonte com emissividade menor, independentemente da frequência, é frequentemente chamada de corpo cinza.[8][9] Construir corpos negros com emissividade o mais próximo possível de 1 continua sendo um tema de interesse atual.[10]

A primeira menção a corpos negros deve-se a Gustav Kirchhoff em 1860, em seu estudo sobre a espectrografia dos gases. Muitos estudiosos tentaram conciliar o conceito de corpo negro com a distribuição de energia prevista pela termodinâmica, mas os espectros obtidos experimentalmente, ainda que válidos para baixas frequências, mostravam-se muito discrepantes da previsão teórica, explicitada pela Lei de Rayleigh-Jeans para a radiação de corpo negro. Uma boa aproximação dos valores para o máximo de emissão para cada temperatura era dado pela Lei de Wien, porém foi Max Planck que, em 1901, ao introduzir a Constante de Planck, como mero recurso matemático, determinou a quantização da energia, o que mais tarde levou à teoria quântica que, por sua vez, rumou para o estudo e surgimento da mecânica quântica.[11][12]

Baseada no física clássica, o modelo de Rayleigh-Jeans, que comparado com medidas experimentais possuía resultados aceitáveis para baixas frequências, mas o modelo previa que conforme a temperatura aumentasse a frequência deveria aumentar proporcionalmente, tendendo ao infinito, o que apresentou uma grande incompatibilidade com os resultados experimentais, que diziam que conforme aumentasse a temperatura do corpo, a frequência deveria atingir um pico e em seguida diminuir.

Isso porque, o modelo de Rayleigh-jeans não levava em consideração a conservação de energia, isso explica porque em seu modelo um corpo negro emitiria quantidade letal de radiação apenas por existir e estar a uma temperatura maior que a ambiente. Esse problema ficou conhecido como a Catástrofe do ultravioleta.

Durante muitos anos a física não apresentava uma solução para esse problema, até que Marx Planck (1900), começou seus estudos sobre o corpo negro, antes de Planck, os átomos que compunham os corpos negros poderiam ser vistos como pequenas molas que oscilavam a uma determinada frequência, por qualquer quantidade mínima de energia.

O postulado de Planck afirmava que os corpos negros continuavam sendo formados com osciladores, que absorvem radiação e depois oscilavam com determinada energia, energia essa que obedecendo a Lei de Conservação de Energia, deveria ser a mesma que da radiação emitida. Neste momento os únicos valores de energia possíveis seriam  múltiplos inteiros de um número pequeno, que futuramente ficou conhecido como a quantização de energia.[13]

  1. a b Oliveira, Kepler; Saraiva, Maria de Fátima (2004). Astronomia e Astrofísica. São Paulo: Livraria da Física. ISBN 85-88325-23-3 
  2. Eisberg, Robert; Resnick, Robert (1979). Física Quântica. [S.l.]: Elsevier. ISBN 85-700-1309-4 
  3. 1 Kittel, 2 Kroemer, 1 Charles, 2 Herbert (1980). Thermal Physics. San Francisco: W.H. Freeman and Company 
  4. «Why is the Sky Blue?». Science Made Simple 
  5. Picazio, E., (ed.) (2011). O Céu que nos Envolve. [S.l.]: Odysseus. ISBN 978-85-7876-021-2 
  6. «Radiação dos Corpos Negros». Consultado em 25 de novembro de 2012 
  7. Mahmoud Massoud (2005). "§2.1 Blackbody radiation". Engineering thermofluids: thermodynamics, fluid mechanics, and heat transfer. Springer. p. 568. ISBN 978-3-540-22292-7.
  8. The emissivity of a surface in principle depends upon frequency, angle of view, and temperature. However, by definition, the radiation from a gray body is simply proportional to that of a black body at the same temperature, so its emissivity does not depend upon frequency (or, equivalently, wavelength). See Massoud Kaviany (2002). "Figure 4.3(b): Behaviors of a gray (no wavelength dependence), diffuse (no directional dependence) and opaque (no transmission) surface". Principles of heat transfer. Wiley-IEEE. p. 381. ISBN 978-0-471-43463-4. and Ronald G. Driggers (2003). Encyclopedia of optical engineering, Volume 3. CRC Press. p. 2303. ISBN 978-0-8247-4252-2.
  9. Some authors describe sources of infrared radiation with emissivity greater than approximately 0.99 as a black body. See "What is a Blackbody and Infrared Radiation?" Education/Reference tab. Electro Optical Industries, Inc. 2008. Archived from the original on 7 March 2016. Retrieved 11 november 2024.
  10. Chun, Ai Lin (2008). "Blacker than black". Nature Nanotechnology. doi:10.1038/nnano.2008.29
  11. Caruso, Francisco; Oguri, Vitor (2006). Física Moderna. página 299 em diante. [S.l.]: Elsevier. ISBN 85-352-1878-5 
  12. Física UFPR. Acessada em 04 de dezembro de 2012.
  13. Planck, Marx. THE THEORY OF HEAT RADIATION. New York: Dover publications 

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne