Na teoria dos grupos, o grupo de simetria de um objeto geométrico é o grupo de todas as transformações sob as quais o objeto é invariante, tendo como operação do grupo a composição. Tal transformação é um mapeamento invertível do espaço ambiente que leva o objeto em si mesmo e que preserva toda a estrutura relevante do objeto. Uma notação frequente para o grupo de simetrias de um objeto X é G = Sym(X).
Para um objeto em um espaço métrico, suas simetrias formam um subgrupo do grupo de isometria do espaço ambiente. Este artigo considera principalmente grupos de simetria na geometria euclidiana, mas o conceito também pode ser estudado para tipos mais gerais de estrutura geométrica.