Identidade de Euler

A função exponencial natural ez pode ser definida como o limite de (1 + zN)N, quando N tende ao infinito, e assim eiπ é o limite de (1 + iπN)N. Nesta animação N assume vários valores crescentes de 1 a 100. O cálculo de (1 + iπN)N é mostrado como efeito combinado de N multiplicações repetidas no plano complexo, com o ponto final sendo o valor de (1 + iπN)N. Pode ser visto que quando N cresce (1 + iπN)N aproxima o limite −1.

Em matemática, a identidade de Euler é representada pela equação

.

Segundo Richard Feynman seria a identidade mais bela de toda a matemática. A equação aparece na obra de Leonhard Euler Introdução, publicada em Lausanne em 1748. Nesta equação, e é a base do logaritmo natural, é a unidade imaginária (número imaginário com a propriedade i² = -1), e é a constante de Arquimedes pi (π, a razão entre o perímetro e o diâmetro de qualquer circunferência).

A beleza da equação é que ela relaciona cinco números fundamentais da matemática: e, pi, i, 0 e 1; e as operações base da matemática: adição, multiplicação e exponenciação.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne